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ABSTRACT. Let R be a commutative ring tity having
total quotient ring T. A prime ideal P of & is called
divided if P is comparable to every principal ideal of R.
if every prime ideal of R is divided, then R is called a
divided ring. If P is a nonprincipal divided prime, then
PP = { x €T . xP c P} is a ring. We show that if & is an
atomic domair n the Krull dimension of R < 1

1y generated prime ideal

ain
Also, we show
a a ring R is divided, then ir

containing
is maximal an

Through out this paper, R denctes a commutative ring with 1

and T denotes the total quotient ring of R. Given a ring

R, then Z{(R} denotes the
denotes the set of nonunits of R. [. Dobbs in [8] studied

divided domains. Our main purpose is to generalize the study

[

of divided domains to the context of arbitrary rings where
possibly Z{R}) is nonzero. Our definition of divided rings

is the same as that one given in [8] for integral domains.

We start with the following definitions

Definition. A prime ideal P of a ring R is called divided if
P is comparable to every principal ideal of R. If every prime

ideal of R is divided, then R is called a divided ring.
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Definition. Recall from [6], a prime ideal P of R” iz
4

Proposition 1. (a). If R is a divided ring, then the prime

ideals of R are linearly ordered and therefore R is quasi-

w

local. (b). If R 1is a PVR, then R is a divided ring.

in {5, Proposition 2] we gave several characterizartions of

s

divided domains. In view of .

we gee that these characterizations still valid for an

arbitrary ring R. Thus, we state them here without proocf.

Proposition 2. The following statements are equivalent for a

ring R.

{1) R is a divided ring.

(2} For every pair of proper ideals I, J of R, I and
Rad(J) are comparable, where Rad({J) denotes the radical of
J.

(3) For every a,b € R, the ideals (a} and Rad!{(b)}
are comparable.

(4} For every a,b € R, either alb or bja® for some

n o= 1.
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DIVIDED COMMUTATIVE RINGS

In light of Proposition 2{(4}, we have the following

result.

Corollary 3. Any homomorphic

divided. In particular, if
ideal of R, then R/I is divided.

The following result ig a 8, z.z
{at} Our proof is different than that given in (8]

Irn {7, Theorem 1], we proved that R  is a PVR if and only

if for every a,b € R, bR and aN are comparable. The

following result is an analog of this fact.

Proposition 5. The following statements are equivalent for
a ring R.

(1} R is divided.

and a"N are comparable.
Proof. (1)==(2). Suppose that bR ¢ a™N for every m =z

Then either a and b are associative in R or a does

not divide b in R, If a and b  are associative,

For every a,b € R, there is an n = 1 such that bR
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bla and therefore an o bR. If a does nor divide b in

R, then bpla® for some n = 1 by Proposition 214} and hence

a"™ < bR. (2) == (1). Let a b e RrR. gy proposition  2(4)  we
need show that either alb or bla® for some noe 1. Now,
if bR © a™ for some 1n e 1L, then alb. If a™N < ba for
some  m x 1, then pfa™! Thus, R is a divided ringt =

A consequence of the above result is rhe following

corollary.

Corollary 6. iletr R bhe a quasilocal ring with rhe maximal

{1} R is divided.

(2} For every a,b € R, there is an n = 1

and  a™ are comparable .

Recall that if 1 ig an ideal of R, thanp I o=
{x €T : xI g }oand 1.1 = {xeT . x1 7 }. We leave

the proof of the following lemma ro the reader.

Lemma 7. Let I bpe gz nonprincipal ideal of R. Then %I ¢y

The following lemma is needed in the nexr result .

Lemma 8. Let P be 3 divided prime ideal of R containing a
nonzerodivisor of R. Then Z{R} « p.
Proof. Let s € P be a nonzerodivisor of g, Suppose that

N

there is a 2z ¢ Z(RJ\P. Since p ig divided, p ¢ (z) and in

¢

particular z|s which is impossible. Thus, Z(R} < p. -

The following result is a generalization of tha first pare

in {4, Proposition 6] .
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Proposition 9. Let P be a nonprincipal divided prime ideal

of R. Then P! = p.p is 3 ring.
Proof. Suppose there is an x &

some  a £ R and a nonzerodivisor

some p o€ P, {a/blp = ¢ € R\P. T

la/b)ip/cl =1 in 7. Since P is € P,
Hence, Z(R) © P by Lemma 8 Thus, <34
R. Since P ig divided an ¢ € R\P, p/c € P. But
(a/biip/c) = 1 which is a contradiction by Lemma 7. Thus,
Pl= PP is a ring. -

The following is a generalization of (4, Proposition 71

L is a nonprincipal divided prime ideal.

ideal of R.
Proof. (1) == (2). This is clear by Proposition 9 and the
definition of divided prime. (2) == (1). Since 1 Contains

4 nonzerodivisor of R and it is comparable to every princi-

pal ideal of R, we see that Z(R} c T. Since 1! is a rin

el

and 1 contains a nonzerodivisor of B, I is n nprincipal.
For, if I is principal, then I = (8] for some nonzerodivi-
80r s € R. Hence, 1/s € I'. Since I is a ring, 1/s° € 1
But {1/s%ls = 1/s & R, a contradiction. Now, we show thar T
is prime. Let § = R\I and XYy € 5. Since Z(R) ¢ I,
neither x nor vy is a zerodivisor of R. Since I isg compa -
rable to every principal ideal of R, 1/x and 1/y  are in I

v 1

Since I is a ring, (/%1 41/y) = 1/xy € 1. Since I
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nonprincipal and 1/xy € I'', xy € §. Thus, 8 is a multiplica-
tively closed subset of R and therefore I is prime L

The following example shows that the hypothesis that I
contains a nonzerodiviso of R is crucial.

Example 11. Let R = Z, and I = (2}. Then I' = R is
a ring and I is divided but I is principal.

In view of Example 11, we have the following result.
Proposition 12. Let I be a proper ideal of R such that
Z(R) <« 1. If I?' is a ring and I is comparable to every
principal ideal of R, then I is prime.
procf. 7To show that I is prime, see the argument in

-

xample shows that the hypothesis ZI(R) < I

=3
jod
o}
ty
a
ho
-
o}
%
ot
o
\s]
rD

is crucial in the above Proposition.

Example 13. ILst R = Z; and I = {(4}. Then I' = R 1is
a ring and I is comparable to every principal ideal of R

but I is not prime.

The first part of the following lemma is taken from [5,
Theorem 11.
Lemma 14. {(a). The prime ideals of a ring R are linearly

ordered if and only if the radical of every proper principal
ideal of R 1is prime if and only if for every a,b € R,
either alb® or bja” for every n,m = 1. (b). If a,b € R,
then Rad({a})} = Rad{(b)} 1if and only if there are n,m 2z 1
such that alb*® and bla".

Proocf. (b). Just observe that Rad{{a})} = Rad{(b}} iff a €
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D. Dobbs in {9, Proposition 2.2 {a)l proved that if » is
a divided prime ideal of a domai R, then p* ig g P-primary
|

ideal of R, for SvVery n = 1. The following is a generaliza-

tion of this face.

Proposition 17. Let P be a divided prime ideal of » such

that Z(R}) < P. Then p* ig P-primary, for every n » 1.

Proof. We show that if a,b € R satisfy ab e po and a ¢

Rad(P"} = P, then b ¢ pr. Consider an element of the form y =
PPz . .Py in P® where the pi's are in P. To show b ¢ P, it

suffices to show that y/a € P, since b is a finite sum of

every p € P. Thus, v/a = p/a)p,. . .p, € po, Hence, b ¢ po.

The following example shows that the hypothesis 2Z(R) < p

in the above Proposition is crucial.

Example 18, Let V = Zo, + XQ[I¥1Y, a two dimensional
valuation domain with prime ideals ({0) < p = KOLIX)] e M =
22p + XQIIX]]. Let R = V/XV. Then R is a PVR (see {q,
Example 10(b)] )} with prime ideals G = pP/X’V and Z(R) = N =
M/X*V, Then G is divided. Now, (2 + x'v) (X?/2 + X)) e @' -
[B° «+ X*] / XV = 0 in R. But neither 2 + %% ¢ Rad(G’) = G

nor  X*/2 4+ X £ 6 since 1/2 ¢ X*V. Hence, @& is not G-

primary of R.

Proposition 19. Let R be an acomic domain. Then R ig
divided if and only if R is quasilocal of Krull dimension 1.
Proof. Suppose that R ig divided with maximal ideal M.

Suppose that there is a nonzero prime ideal P of R such
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Rad{{b)} and b € Rad{{aj) iff there are n,m = 1 such

that alb® and bl

Recall that a ring B  is called an overring
8 < T. A prime ideal P of R contains a nonzerodivisor element

of R is called a minimal regular prime ideal of R if whenever

Proposition 15. Suppose that the prime ideals of a ring R

are linearly ordered, and E is an overring of R containing a

oy

element of the form 1/s for some nonunit nonzerodivisor
5 € R. Furthermore, suppose that Rad{{(s)} is a minimal

regular prime ideal of R, then B = T. In particular, if R

is divided, then = T is divided

Proof. To show that B = T, it suffices to show thatr 1/d £ g

for every nonzercdivisor d € R. Let d be a nonzerodivisor

of R. We consider two cases : case 1. Suppose that 4 ¢

R\Rad((s)}. Then dis" for some n = 1 by Lemma 14 {a)

Hence, s = dk  for some k € R Thus, k/s" = 1/d in T

Since 1/s € B, k/s® = 1/b € B. Case 2. Suppose that d ¢

Rad(({s)}. Since Rad({(s)} is a minimal prime ideal of R and

Rad((d)) is prime by Lemma 14 (a), Rad{(s)) = Rad{(d)}.

Hence, dls” for some n = 1 by Lemma 14 (bj. Now, a similar

argument as in case 1, we conclude that 1/d € B. Thus, B =

T. The remaining part is clear by Proposition 4. -
In light of the above Proposition, we have the following.

Corollary 16. Let R be a quasilocal ring of a Krull

dimension 1 containing a nonunit nonzerodivisor element. Then

T is the only overring of R containing an element of the

or some nonunit nonzerodivisor g € R,

bl

form i/s
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that P ¢ M. Then there are atoms a,b of R such that

a € P and b e M\P Since P is divided, bla which is a
contradiction. The converse is clear. -

The following lemma is well-known. See for example {10,

R is divided,

then P is maximal and therefore R is quasilocal.

Proposition 21. Let P be 3 finitely generated prime ideal
containing a nonzercodivisor of R. If p isg divided, then p
is maximal and therefore &g is quasilocal

Proof. Deny. Then there is an s € N\P. Since p contains

a nonzerodivisor of R, Z(R) « P by Lemma &, Hence, 5 is &

nonzerodivisor of R. Since p is prime and divided,
(1/8)P = P. Since p contains a nonzerodivisor of R, the
annihlator of P in T ig 0. Hence, by [10, Theorem 121,

1/s is integral cver R. A contradiction by Lemma 20. n
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